Cambridge Senior General Mathematics AC/VCE Units 1 \& 2 Chapter 5 Matrices: Skillsheet 5K

Solve to find x, y and z

$$
\begin{aligned}
x+2 y+3 z & =9 \\
4 x-y+5 z & =24 \\
3 x-6 y+7 z & =33
\end{aligned}
$$

1. The three simultaneous equations can be represented by the matrix equation shown.
2. The left-hand side of the matrix equation in step 1 can be written as the product of two matrices.
3. Name the matrices as shown.

Matrix B contains the solutions to the simultaneous equations.
4. Enter matrix A and matrix C.

If you need help, see "How to enter a matrix" pages 220 and 221 in the print textbook.
5. We want to find the values of matrix B Since

$$
\begin{aligned}
A \times B & =C \\
A^{-1} \times A \times B & =A^{-1} \times C \\
I \times B & =A^{-1} \times C \\
B & =A^{-1} \times C
\end{aligned}
$$

6. Write matrix B.
7. Write the solutions to the equations.
8. Check the solutions by substituting the values of x, y and z into at least one of the original equations.

$$
\left[\begin{array}{c}
x+2 y+3 z \\
4 x-y+5 z \\
3 x-6 y+7 z
\end{array}\right]=\left[\begin{array}{c}
9 \\
24 \\
33
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & -1 & 5 \\
3 & -6 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
24 \\
33
\end{array}\right]
$$

$$
A \times B=C
$$

$$
B=A^{-1} C
$$

$$
\mathcal{B}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

$$
\text { So } x=2, y=-1 \text { and } z=3
$$

Using: $x+2 y+3 z=9$
$L H S=2+2(-1)+3(3)$

$$
\begin{aligned}
& =9 \\
& =\text { RHS, as required. }
\end{aligned}
$$

Cambridge Senior General Mathematics AC/VCE Units 1 \& 2 Chapter 5 Matrices: Skillsheet 5K

Exercise

Use matrix methods on your CAS calculator to solve the following simultaneous equations.
$12 x+y+5 z=8$

$$
\begin{aligned}
& 3 x-4 y+6 z=-13 \\
& 9 x+7 y-8 z=-15
\end{aligned}
$$

$25 x-2 y+6 z=-26$
$4 x-y+9 z=-4$
$8 y+11 z=89 *$
*Hint: In Question 2, consider the third equation as $0 x+8 y+11 z=89$
$3 \quad 4 w+3 x-5 y+6 z=50$
$2 w-7 x+y+8 z=26$
$9 w-10 x-4 y+11 z=64$
$5 w+2 x+8 y-7 z=-40$

