GENERAL MATHS 2019 NAME:

NETWORKS

For each concept you need to tick **one** box in the EXERCISES column and **all three** boxes in the BOUND REFERENCE column.

CONCEPT	EXERCISES		BOUND REFERENCE	
An introduction to graph theory and terminology such as edges, degree, vertex, and loop used when describing networks in Mathematics and how adjacency matrices can also describe graphs.	Exercise 9B Entry: 1ac, 3 & 4 Expected: 1ac, 2, 3 & 4 Expected +: 1, 2, 3 & 4 Exercise 9C Entry: 1ace, 1, 2ac, 3ac, & 1acbd Expected: 1ace, 1, 2ac, 3ac, 4, 5 & 9C-3 Expected +: 1ace, 1, 2ac, 3ac, 4, 5, 6 & 9C-3		Concept How to Example(s)	0
The concept of planar graphs and how to use Euler's formula when working with these.	Exercise 9D Entry: 1, 2ace, 3 & 4abc Expected: 1, 2ace, 3 & 4aceg Expected +: 2ace, 3, 4ace & 5 Exercise 9E		Concept How to Example(s)	
Ideas about travelling through graphs and an understanding of the terms walk , trail , path , circuit & cycle .	Entry: 1 Expected: 1 Expected +: 1		Concept How to Example(s)	
Identify traversable graphs and applying the rules to support.	Exercise 9F Entry: 1,3,5,7 Expected: 1,3,5,7, Expected +: 1,3,5,7,9			
The concept of Eulerian Trails and Circuits and how to use them in application	Exercise 9G Entry: 1a-c, 2ab, 4, Expected: 1 acegi, 2ab, 4, 5 Expected +: 1 acegi, 2ab, 4, 5		Concept How to Example(s)	
The concept of Hamiltonian Paths and Cycles and the applications of these.	Exercise 9H Entry: 1ab, 2ab 4ab Expected: 1ab, 2abd 4ab Expected +: 1ab, 2abd 4ab			

Working with weighted graphs and using these to find shortest paths.	Exercise 91 Entry: 1- 4 Expected: 1 - 5 Expected +: 1 - 5	Concept How to Example(s)	
The concept of minimum spanning trees and identifying these in a connected graph.	Exercise 9J Entry: 1ab, 2, 3ab, 4ab, 5a Expected: 1ab, 2, 3ace, 4abc, 5ac, 6 Expected +: 1ab, 2, 3ace, 4abc, 5ac, 6	Concept How to Example(s)	
Applying knowledge of networks to a real world situation.	Application Task Entry: 1, 2, 3 & 4 Expected: 1, 2, 3, 4 & 5 Expected +: 1, 2, 3, 4, 5 & 6		